
A Practical Approach to Classify Evolving Data Streams:
Training with Limited Amount of Labeled Data

Mohammad M. Masud†

mehedy@utdallas.edu
Jing Gao‡

jinggao3@uiuc.edu
Latifur Khan†

lkhan@utdallas.edu
Jiawei Han‡

hanj@cs.uiuc.edu

Bhavani Thuraisingham†

bhavani.thuraisingham@utdallas.edu

†Department of Computer Science, University of Texas at Dallas
‡Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract

Recent approaches in classifying evolving data streams
are based on supervised learning algorithms, which can be
trained with labeled data only. Manual labeling of data
is both costly and time consuming. Therefore, in a real
streaming environment, where huge volumes of data appear
at a high speed, labeled data may be very scarce. Thus,
only a limited amount of training data may be available for
building the classification models, leading to poorly trained
classifiers. We apply a novel technique to overcome this
problem by building a classification model from a training
set having both unlabeled and a small amount of labeled
instances. This model is built as micro-clusters using semi-
supervised clustering technique and classification is per-
formed with κ-nearest neighbor algorithm. An ensemble of
these models is used to classify the unlabeled data. Empiri-
cal evaluation on both synthetic data and real botnet traffic
reveals that our approach, using only a small amount of la-
beled data for training, outperforms state-of-the-art stream
classification algorithms that use twenty times more labeled
data than our approach.

1 Introduction
Stream data classification is a challenging problem be-

cause of two important properties: its infinite length and
evolving nature. Data streams may evolve in several ways:
the prior probability distribution p(c) of a class c may
change, or the posterior probability distribution p(c|x) of the
class may change, or both the prior and posterior probabil-
ities may change. In either case, the challenge is to build a
classification model that is consistent with the current con-
cept. Traditional learning algorithms that require several

passes on the training data, cannot be directly applied to the
streaming environment, because the number of training ex-
amples would be infinite. To solve this problem, ensemble
classification techniques have been proposed.

Ensemble approaches have the advantage that they can
be updated efficiently, and they can be easily made to adopt
the changes in the stream. Several ensemble approaches
have been devised for classification of evolving data streams
[7, 10]. The general technique practiced by these ap-
proaches is that the data stream is divided into equal-sized
chunks. Each of these chunks is used to train a classifier.
An ensemble of L such classifiers are used to test unlabeled
data. However, these ensemble approaches are based on su-
pervised learning algorithms, and can be trained only with
labeled data. But in practice, labeled data in streaming en-
vironment are rare.

Manual labeling of data is usually costly and time con-
suming. So, in an streaming environment, where data ap-
pear at a high speed, it may not be possible to manually
label all the data as soon as they arrive. Thus, in practice,
only a small fraction of each data chunk is likely to be la-
beled, leaving a major portion of the chunk as unlabeled.
So, a very limited amount of training data will be available
for the supervised learning algorithms. Considering this dif-
ficulty, we propose an algorithm that can handle “partially
labeled” training data in a streaming environment. By “par-
tially labeled” we mean only a fraction (e.g. 5%) of the
training instances are labeled, and by “completely labeled”
we mean all (100%) the training instances are labeled. Our
approach is capable of producing the same (or even bet-
ter) results with partially labeled training data compared to
other approaches that use completely labeled training data
having twenty times more labeled data than our approach.

Naturally, stream data could be stored in buffer and pro-

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.152

929

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.152

929

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 1, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

cessed when the buffer is full, so we divide the stream data
into equal sized chunks. We train a classification model
from each chunk. We propose a semi-supervised cluster-
ing algorithm to create K clusters from the partially labeled
training data. A summary of the statistics of the instances
belonging to each cluster is saved as a “micro-cluster”.
These micro-clusters serve as a classification model. To
classify a test instance using this model, we apply the κ-
nearest neighbor (κ-NN) algorithm to find the Q nearest
micro-clusters from the instance and select the class that has
the highest frequency of labeled data in these Q clusters. In
order to cope with the stream evolution, we keep an ensem-
ble of L such models. Whenever a new model is built from
a new data chunk, we update the ensemble by choosing the
best L models from the L+1 models (previous L models and
the new model), based on their individual accuracies on the
labeled training data of the new data chunk. Besides, we
refine the existing models in the ensemble whenever a new
class of data evolves in the stream.

It should be noted that when a new data point appears
in the stream, it may not be labeled immediately. We defer
the ensemble updating process until some data points in the
latest data chunk have been labeled, but we keep classifying
new unlabeled data using the current ensemble. For exam-
ple, consider the online credit-card fraud detection problem.
When a new credit-card transaction takes place, its class
({fraud,authentic}) is predicted using the current ensemble.
Suppose a ‘fraud’ transaction has been mis-classified as ‘au-
thentic’. When the customer receives the bank statement,
he will identify this error and report to the authority. In this
way, the actual labels of the data points will be obtained,
and the ensemble will be updated accordingly.

We have several contributions. First, we propose an effi-
cient semi-supervised clustering algorithm based on cluster-
impurity measure. Second, we apply our technique to clas-
sify evolving data streams. To our knowledge, there are
no stream data classification algorithms that apply semi-
supervised clustering. Third, we provide a solution to the
more practical situation of stream classification when la-
beled data are scarce. We show that our approach can
achieve better classification accuracy than other stream clas-
sification approaches, utilizing only a fraction (e.g. 5%) of
the labeled instances used in those approaches. Finally, we
apply our technique to detect botnet traffic, and obtain 98%
classification accuracy on average. We believe that the pro-
posed method provides a promising, powerful, and practical
technique to the stream classification problem in general.

The rest of the paper is organized as follows: section
2 discusses related work, section 3 describes the semi-
supervised clustering technique, section 4 discusses the
ensemble classification with micro-clusters, section 5 dis-
cusses the experiments and evaluation of our approach, and
section 6 concludes with directions to future works.

2 Related work
Our work is related to both stream classification and

semi-supervised clustering techniques. We briefly discuss
both of them.

Semi-supervised clustering techniques utilize a small
amount of knowledge available in the form of pairwise
constraints (must-link, cannot-link), or class labels of the
data points. Recent approaches for semi-supervised clus-
tering incorporated pairwise constraints on top of the un-
supervised K-means clustering algorithm and formulated
a constraint-based K-means clustering problem [2, 9],
which was solved with an Expectation-Maximization (E-
M) framework. Our approach is different from these ap-
proaches because rather than using pair-wise constraints,
we utilize a cluster-impurity measure based on the limited
labeled data contained in each cluster. If pair-wise con-
straints are used, then the running time per E-M step is
quadratic in total number of labeled points, whereas the run-
ning time is linear if impurity measures are used. So, the
impurity measures are more realistic in classifying a high-
speed stream data.

There have been many works in stream data classifica-
tion. There are two main approaches - single model classifi-
cation, and ensemble classification. Single model classifica-
tion techniques incrementally update their model with new
data to cope with the evolution of the stream [4, 5]. These
techniques usually require complex operations to modify
the internal structure of the model and may perform poorly
if there is concept-drift in the stream. To solve these prob-
lems, several ensemble techniques for stream data mining
have been proposed [7, 10]. These ensemble approaches
have the advantage that they can be more efficiently built
than updating a single model and they observe higher accu-
racy than their single model counterpart [8].

Our approach is also an ensemble approach, but it is
different from other ensemble approaches in two aspects.
First, previous ensemble-based techniques use the underly-
ing learning algorithm (such as decision tree, Naive Bayes,
etc.) as a black-box and concentrate only on building an
efficient ensemble. But we concentrate on the learning al-
gorithm itself, and try to construct efficient classification
models in an evolving scenario. In this light, our work is
more closely related with the work of Aggarwal et al [1].
Secondly, previous techniques (including [1] require com-
pletely labeled training data. But in practice, a very limited
amount of labeled data may be available in the stream, lead-
ing to poorly trained classification models. So our approach
is more realistic in a stream environment. Our model is also
different from Aggarwal et al. [1] in one more aspect: Ag-
garwal et al. apply horizon-fitting to classify evolving data
streams, whereas we use a fixed-sized ensemble of classi-
fiers, which requires less memory since we do not need to
store snapshots.

930930

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 1, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

3 Impurity-based clustering with small
number of labeled data

In the semi-supervised clustering problem, we are given
m data points X = {x1, x2, ..., xm}, and their corresponding
class labels, Y = {y1, y2, ..., ym}, yj ∈ {φ, 1, ..., C} where
C is the total number of classes. If a data point xj ∈ X
has yj = φ, then it is unlabeled. We are to create K clusters,
maintaining the constraint that all labeled points in the same
cluster have the same class label. Given a limited amount
of labeled data, the goal of impurity-based clustering is to
create K clusters by minimizing the intra-cluster dispersion
(same as unsupervised K-means) and at the same time min-
imizing the impurity of each cluster. We will refer to this
problem as K-means with Minimization of Cluster Impurity
(MCI-Kmeans). A cluster is completely pure if it contains
labeled data points from only one class (along with some
unlabeled data). Thus, the objective function should penal-
ize each cluster for being impure. The general form of the
objective function is as follows:

OMCIKmeans =

K∑

i=1

∑

x∈Xi

||x− ui ||2 +

K∑

i=1

Wi ∗ Impi (1)

where Wi is the weight associated with cluster i and Impi

is the impurity of cluster i. In order to ensure that both the
intra-cluster dispersion and cluster impurity are given the
same importance, the weight associated with each cluster
should be adjusted properly. Besides, we would want to pe-
nalize each data point that contributes to the impurity of the
cluster (i.e., the labeled points). So, the weight associated
with each cluster is chosen to be

Wi = |Li| ∗ D̄Li
(2)

where Li is the set of all labeled data points in Cluster i

and D̄Li
is the average dispersion from each of these labeled

points to the cluster centroid. Thus, each labeled point has a
contribution to the total penalty, which is equal to the cluster
impurity multiplied by the average dispersion of the labeled
points from the centroid. We observe that equation (2) is
equivalent to the sum of dispersions of all labeled points
from the cluster centroid, i.e., Wi =

∑
x∈Li

||x−ui ||2.
Substituting this value of Wi in (1) we obtain:

OMCIKmeans =

K∑

i=1

∑

x∈Xi

||x− ui ||2 +

K∑

i=1

∑

x∈Li

||x− ui ||2 ∗ Impi

=

K∑

i=1

(
∑

x∈Xi

||x− ui ||2 +
∑

x∈Li

||x− ui ||2 ∗ Impi) (3)

Impurity measures: Equation (3) should be applicable to
any impurity measure in general. We use the following im-
purity measure: Impi = ADCi ∗ Enti, where ADCi is the
“aggregated dissimilarity count” of cluster i and Enti is the
entropy of cluster i. In order to understand ADCi, we first
need to define “Dissimilarity count”.
Definition 1 (Dissimilarity count) Dissimilarity count
DCi(x, y) of a data point x in cluster i having class label y is

the total number of labeled points in that cluster belonging
to classes other than y. If x is unlabeled (i.e., y = φ), then
DCi(x, y) is zero.

In other words, DCi(x, y) = 0, if x is unlabeled, and DCi(x, y)

= |Li| − |Li(c)|, if x is labeled and its label y = c, where
Li(c) is the set of labeled points in cluster i belonging
to class c. Note that DCi(x, y) can be computed in con-
stant time, if we keep an integer vector to store the counts
|Li(c)|, c ∈ {1, .., C}. “Aggregated dissimilarity count” or
ADCi is the sum of the dissimilarity counts of all the points
in cluster i: ADCi =

∑
x∈Li

DCi(x, y). Entropy of a cluster i

is computed as: Enti =
∑C

c=1(−pi
c ∗ log(pi

c)), where pi
c is the

prior probability of class c, i.e., pi
c = |Li(c)|

|Li| .
The use of Enti in the objective function ensures that

clusters with higher entropy get higher penalties. However,
if only Enti had been used as the impurity measure, then
each labeled point in the same cluster would have received
the same penalty. But we would like to favor the labeled
points belonging to the majority class in a cluster, and dis-
favor the points belonging to the minority classes. Doing
so would force more labeled points of the majority class to
be moved into the cluster, and more labeled points of the
minority classes to be moved out of the cluster, making the
clusters purer. This is ensured by introducing ADCi to the
equation. We call the combination of ADCi and Enti as
“compound impurity measure” since it can be shown that
ADCi is proportional to the “gini index” of cluster i:

ADCi =
C∑

c=1

(|Li(c)|)(|Li| − |Li(c)|) = (|Li|)2
C∑

c=1

(pi
c)(1− pi

c)

= (|Li|)2(1−
C∑

c=1

(pi
c)

2) = (|Li|)2 ∗Ginii

where Ginii is the gini index of cluster i.
The problem of minimizing equation (3) is an

incomplete-data problem because the cluster labels and the
centroids are all unknown. The common solution to this
problem is to apply E-M [3]. The E-M algorithm consists
of three basic steps: initialization, E-step and M-step. The
technical details of these steps can be found in [6].

4 Micro-clustering and ensemble training
After creating K clusters using the semi-supervised algo-

rithm, we extract and save summary of the statistics of the
data points in each cluster as a “micro-cluster” and discard
the raw data points. We will refer to the K micro-clusters
built from a data chunk as a classification model, since we
use these micro-clusters to classify unlabeled data. We keep
an ensemble of L such models.

4.1 Storing the cluster summary
information as micro-clusters

Each model M i ∈ M contains K micro-clusters
{M i

1, ..., M i
K}, where each micro-cluster M i

j is a summary of

931931

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 1, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

the statistics of the data points X i
j = {xi

j1
, ...xi

jN
} belonging

to that cluster. The summary contains the following statis-
tics: i) N : the total number of points; ii) Lt: the total number
of labeled points; iii) {Lp[c]}C

c=1: a vector containing the to-
tal number of labeled points belonging to each class. iv) u:
the centroid of the cluster; v) {Sum[r]}d

r=1: a vector con-
taining the sum of each dimension of the data points in the
cluster, where Sum[r] contains the sum of the values of the
rth dimension. This vector is required to re-compute the
cluster centroid after merging two micro-clusters.

4.2 Updating the ensemble
Every time a new data chunk Dn appears, we train a new

model Mn from Dn and update the ensemble by choosing
the best L models from the existing L+1 models (M∪{Mn}).
Algorithm 1 sketches this updating process.

Algorithm 1 Ensemble-Update
Input: Xn,Yn: training data points and class labels associated

with some of these points in chunk Dn

Zn: test data points in chunk Dn

K: number of clusters to be created
M : current ensemble of L models {M1, ..., ML}

Output: Updated ensemble M
1: Obtain K clusters {Xn

1 , ...,Xn
K} using E-M algorithm. and

compute their summary of statistics {Mn
1 , ..., Mn

K}
2: if no cluster M i

j ∈M contains some class c that is seen in the
new model Mn then

3: Refine-Ensemble(M, Mn)
4: end if
5: Test each model M i

j ∈M and Mn on the labeled data of Xn

and obtain its accuracy
6: M ← Best L models in M ∪ {Mn} based on accuracy.
7: Predict the class labels of data points in Zn with M .

Description of the algorithm “Ensemble-Update”: As-
suming that the new data chunk Dn has some labeled data,
we first randomly divide it into two subsets; Xn: the training
set and Zn: the test set. We include all the labeled instances
and a few unlabeled instances from Dn in the training set.
The rest of the unlabeled instances in Dn are included in
the test set. We create K clusters using Xn with the clus-
tering technique described in section 3. We then extract the
summary of statistics from each cluster Xn

j and store it as
a micro-cluster Mn

j (line 1). We handle a special case in
lines (2-4) that deals with the evolving data streams. It is
possible that in the new data chunk, suddenly a new class
has appeared that never appeared in the stream before. Or it
may happen that a class has appeared, which has not been
in the stream for a long time. In either case, the class is un-
known to the existing ensemble of models M . So, we refine
the models in M so that they can correctly classify the in-
stances belonging to that class. This refinement process will
be explained shortly. Since we have L+1 models now, one
of them must be discarded. This is done by testing the ac-

curacy of each of these models on the labeled data points in
the training data Xn, and removing the worst of them (lines
5-6). Finally, we predict the classes of the test data Zn with
the new ensemble M (line 7).

Ensemble refinement: The ensemble M is refined us-
ing the newly built model Mn. The refinement procedure
first looks into each micro-cluster Mn

j of the model Mn. If
any micro-cluster has some labeled data and majority of the
labeled data are in class ĉ, but no model in the ensemble
M has any micro-cluster containing labeled data of class ĉ,
then we do the following: for each model M i ∈ M , we inject
the micro-cluster Mn

j in M i with some probability, called
the probability of injection, or ρ. To inject a micro-cluster,
we first merge two nearest micro-clusters in M i having the
same majority class. Then we add the new micro-cluster
Mn

j to M i. This ensures that total number of micro-clusters
in the model remains constant.

The reasoning behind this refinement is as follows. Since
no model in ensemble M has knowledge of the class ĉ, the
models will certainly miss-classify any data belonging to
the class. By injecting micro-clusters of the class ĉ, we in-
troduce some data from this class into the models, which
reduces their miss-classification rate. It is obvious that for
higher values of ρ, more training instances will be provided
to a model, which will probably induce more error reduc-
tion. So, when ρ = 1, we will probably have maximum re-
duction in prediction error for a single model. However, if
the same set of micro-clusters are injected in all the models,
then the correlation among them may increase, resulting in
reduced prediction accuracy of the ensemble [8]. Lemma 1
states that the ensemble error is the lowest when ρ = 0.

Lemma 1 Let EM be the added error of the ensemble M

when ρ ≥ 0 and E0
M is the added error of the ensemble M

when ρ = 0. Then EM ≥ E0
M for any ρ ≥ 0.

Proof: See [6]. �
So, in summary, if we increase ρ, single model error de-
creases but the ensemble error increases. So, the net effect
is that when ρ is initially increased from zero, the overall
error keeps decreasing upto a certain point. After that point,
increasing ρ hurts performance (i.e., the total error starts in-
creasing) due to increased correlation among the models.
This trade-off is also discussed in our experimental results
(section 5.3). So, we have to choose a value of ρ that can
minimize the overall error. In our experiments, the best
value was found to be within 0.5-0.75.

4.3 Ensemble classification using
κ-nearest neighbor

In order to classify an unlabeled data point x with a
model M i, we perform the following steps: i) find the Q-
nearest labeled micro-clusters from x in M i, by comput-
ing the distance between the point and the centroids of the
micro-clusters. A micro-cluster is assumed to be labeled if

932932

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 1, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

it has at least one labeled data point. ii) select the class with
the highest “cumulative normalized-frequency (CNFrq)” in
these Q clusters as the predicted class of x. The “normal-
ized frequency” of a class c in a micro-cluster is the number
of instances of class c divided by the total number of labeled
instances in that micro-cluster. CNFrq of a class c is the sum
of the normalized frequencies of class c in all the Q clusters.
In order to classify x with the ensemble M , we perform the
following steps: i) find the Q-nearest labeled micro-clusters
from x in each model M i ∈ M , ii) select the class with the
highest CNFrq in these L ∗Q clusters as the predicted class.

5 Experiments
In this section we discuss the data sets used in the exper-

iments, the system setup, the results, and analysis.

5.1 Datasets and experimental setup
We apply our technique on real botnet dataset generated

in a controlled environment, and also on synthetic datasets.
Details of these datasets are discussed in [6].

Each dataset is divided into two equal subsets: training
and testing, such that every training instance is followed by
a test instance. Our algorithm will be mentioned hence-
forth as “SmSCluster”, which is the acronym for Semi-
supervised Stream Clustering. Parameter settings of Sm-
SCluster are as follows, unless mentioned otherwise: K

(number of micro-clusters) = 50; Q (number of nearest
neighbors for the κ-NN classification) = 1; ρ (probability
of injection) = 0.75; Chunk-size = 1,600 records for botnet
dataset, and 1,000 records for synthetic dataset; L (ensem-
ble size) = 8; P (Percentage of labeled points): 5% in all
datasets, meaning only 5% (randomly selected) of the train-
ing data are assumed to have labels;

We compare our algorithm with that of Aggarwal et al
[1]. We will refer to this approach as “On Demand Stream”.
For the On Demand Stream, we use all the default values of
its parameters. We use the same set of training and test data
for both On Demand Stream and SmSCluster with the only
difference that in SmSCluster, only 5% data in the training
set have labels, but in On Demand Stream, 100% data in the
training set have labels. So, if there are 100 data points in a
training set, then On Demand Stream has 100 labeled train-
ing data points, but SmSCluster has only 5 of them labeled
and 95 of them unlabeled. Also, for a fair comparison, the
chunk-size of SmSCluster is made equal to the buffer size
of On Demand Stream. We run our own implementation of
the On Demand Stream and report the results.

5.2 Comparison with baseline methods
Figure 1(a) shows the accuracy of SmSCluster

and On Demand Stream (for “stream speed”=80,
“buffer size”=1,600, and kfit=80) on the botnet data.
We also obtain similar results for other values of
“stream speed” and “buffer size” for On Demand Stream.

The X-axis represents stream in time units and the Y-axis
represents accuracy. Here each time unit is equal to 80 data
points. For example, the left bar at time unit 120 (X=120)
shows the accuracy of of SmSCluster at that time, which
is 98%. The right bar at the same time unit shows the ac-
curacy of On Demand Stream, which is 94%. SmSCluster
has 4% or better accuracy than On Demand Stream in all
the five time-stamps shown in the chart. Figure 1(b) shows

 90

 92

 94

 96

 98

 100

60 120 180 240 300

A
cc

ur
ac

y(
%

)

Stream (in time units)

a (botnet)

SmSCluster
On Demand Stream

 88

 90

 92

 94

 96

 98

100 200 300 400 500

Stream (in time units)

b (synthetic)

Figure 1. Accuracy comparison on (a) botnet
data, and (b) synthetic data

the accuracies of SmSCluster and On Demand Stream (for
“stream speed”=200, “buffer size”=1,000 , and kfit=50)
on synthetic data (100K, C10, D40). We also obtain similar
results for other values of “stream speed” and “buffer size”
for On Demand Stream. SmSCluster has 4% or better
accuracy than On Demand Stream in all time units except
at time 100, when the difference is 2.3%.

From the above results, we can conclude that SmSClus-
ter outperforms On Demand Stream in all datasets. There
are two main reasons behind this. First, SmSCluster con-
siders both the dispersion and impurity measures in build-
ing clusters, but On Demand Stream considers only purity,
since it applies supervised K-means algorithm. Besides,
SmSCluster uses proportionate initialization, so that more
clusters are formed for the larger classes (i.e., classes hav-
ing more instances). But On Demand Stream builds equal
number of clusters for each class, so clusters belonging to
larger classes may be bigger (and more sparse). Thus, the
clusters of SmSCluster are likely to be more compact than
those of the On Demand Stream. As a result, the κ-nearest
neighbor classification gives better prediction accuracy in
SmSCluster. Second, SmSCluster applies ensemble classi-
fication, rather than the “horizon fitting” technique used in
On Demand Stream. Horizon fitting selects a horizon of
training data from the stream that corresponds to a variable-
length window of the most recent (contiguous) data chunks.
It may be possible that one or more chunks in that window
have been outdated, resulting in a less accurate classifica-
tion model. This is because the set of training data that is
the best representative of the current concept are not nec-
essarily contiguous. But SmSCluster always keeps the best

933933

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 1, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

training data (or models) that are not necessarily contigu-
ous. So, the ensemble approach is more flexible in retaining
the most up-to-date set of training data, resulting in a more
accurate classification model.

5.3 Running times and sensitivity to
parameters

The processing speed of SmSCluster for botnet data is
4,000 instances per second, and for synthetic data (300K,
C10, D20) 2,500 instances per second, including training
and testing instances. Speed is faster for the botnet data
since it has only 2 classes, as opposed to 10 classes for the
synthetic data. Besides, experimental results show that [6]
running time of SmSCluster scales linearly to higher dimen-
sionality and class labels.

All the following results are obtained from the synthetic
data (300K, C10, D20), but these are the general trends in
any dataset. Figure 2(a) shows how the classification ac-
curacy varies for SmSCluster with the number of micro-
clusters (K), and the number of nearest neighbors (Q) for
the κ-NN algorithm. We observe that higher values of K

lead to better classification accuracies. This may happen be-
cause when K is larger, smaller and more compact clusters
are formed, leading to a finer-grained classification model
for the κ-NN algorithm. However, there is no significant
improvement after K=50. We also observe the effect of Q

from this chart. It is evident that Q=1 has the highest ac-
curacy, meaning, we need to apply only 1-nearest neighbor.
This is true for any value of K. Figure 2(b) shows how the
classification accuracy varies for SmSCluster with percent-
age of labeled data (P) in the training set and the number of
micro-clusters (K). We see that the accuracy increases with
increasing number of labeled data in the training set. This
is desirable, because more labeled data means better guid-
ance for clustering, leading to reduced error. However, after
a certain point (20%), there is no real improvement. This is
because, probably this amount of labeled data is sufficient
for the model. The parameters ρ (injection probability) and
L (ensemble size) also have effects on accuracy. We ob-
serve that increasing ρ (injection probability) up to 0.5 in-
creases the overall accuracy. After that, the accuracy drops
in general. This result follows from our analysis discussed
in section 4.2. We achieve the highest accuracy for ensem-
ble size (L)=8. Further increasing the ensemble size does
not improve the performance. This is possible if the dataset
evolves continuously, resulting in some out-dated models in
a larger ensemble.

6 Conclusion
We address a more realistic problem of stream mining:

training with a limited amount of labeled data. Our tech-
nique is a more practical approach to the stream classifi-
cation problem since it requires a fewer amount of labeled
data, saving much time and cost that would be otherwise

 50

 60

 70

 80

 90

 100

 2 20 50 100

A
cc

ur
ac

y(
%

)

K

a

Q=1
Q=2
Q=3
Q=4

 40

 55

 70

 85

 100

 1 3 5 10 15 20

P

b

K=2
K=5

K=10
K=50

K=100

Figure 2. Sensitivity to parameters P, K, Q
required to manually label the data. Previous approaches
for stream classification did not address this vital prob-
lem. We propose and implement a semi-supervised clus-
tering based stream classification algorithm to solve this
limited labeled-data problem. We tested our technique on
synthetically generated dataset, and real botnet dataset, and
got better classification accuracies than other stream clas-
sification techniques. In future, we would like to incor-
porate feature-weighting and distance-learning in the semi-
supervised clustering.

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A frame-
work for on-demand classification of evolving data streams.
IEEE Transactions on Knowledge and Data Engineering,
18(5):577–589, 2006.

[2] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic
framework for semi-supervised clustering. In Proc. KDD,
2004.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the Royal Statistical Society B, 39:1–38, 1977.

[4] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proc. SIGKDD, pages 71–80, 2000.

[5] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat-
optimistic decision tree construction. In Proc. SIGMOD,
1999.

[6] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thu-
raisingham. A practical approach to classify evolving
data streams: Training with limited amount of labeled
data. Univ. of Texas at Dallas Tech. Report# UTDCS-32-
08 (http://www.utdallas.edu/˜mmm058000/reports/UTDCS-
32-08.pdf), October 2008.

[7] M. Scholz and R. Klinkenberg. An ensemble classifier
for drifting concepts. In Proc. ICML/PKDD Workshop in
Knowledge Discovery in Data Streams., 2005.

[8] K. Tumer and J. Ghosh. Error correlation and error reduction
in ensemble classifiers. Connection Science, 8(304):385–
403, 1996.

[9] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Con-
strained k-means clustering with background knowledge. In
Proc. ICML, pages 577–584, 2001.

[10] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-
drifting data streams using ensemble classifiers. In Proc.
KDD, 2003.

934934

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 1, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

